

Yield gap analysis of feed crop-livestock systems: the case of grass-based beef production in France

Aart van der Linden, Simon Oosting, Gerrie van de Ven, Patrick Veysset, Imke de Boer, and Martin van Ittersum

WaCASA meeting, 14 December 2016

© de Superhelden / WUR

Introduction

Feed-crop livestock system

Introduction

Concepts of production ecology

Introduction

kg beef t^{-1} DM \times t DM ha^{-1} year⁻¹ = kg beef ha^{-1} year⁻¹

Objectives

- Quantify yield gaps in feed-crop livestock systems
- Analyse yield gaps in feed-crop livestock systems
- Identify improvement options to mitigate yield gaps

for beef production systems in the Charolais area of France

Beef production systems in the Charolais area of France

Cal	ving
-----	------

	Stable	es	Grazing								
 Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Two	mai	n type	es								

- Cow-calf systems (calves sold at 300-420 kg)
- Cow-calf-fattener systems (calves sold at 690-720 kg)

12 farm types with Charolais cattle

Diets

Fresh grass: 44-66%

■ Hay: 28-37%

Cereals: 4-19%

Area feed production: 76-295 ha

Stocking density: 1.21-1.81 livestock units per ha

Economic data

Simulated production levels (kg live weight ha-1 year-1)

- Potential production → maximum production per hectare, 100% grass silage, potential grass yields
- Resource-limited production → water-limited crop production and feed-limited cattle production

Measured: actual production realized on farms

Additional production levels simulated

- Feed-limited cattle production and potential crop production
- Resource-limited production with sub-optimal cattle management
- Resource-limited production with sub-optimal cattle management, calf mortality, and prolonged calving intervals

Results & discussion

Yield gaps in feed crops

Production level or relative yield gap	Unit	Grass	Hay	Grass silage	Maize silage	Wheat
Potential production (Y _P)	kg DM ha ⁻¹ year ⁻¹	14.4	16.6	18.7	25.2	8.3
Water-limited production (Y _L)	kg DM ha ⁻¹ year ⁻¹	7.2	7.5	-	19.6	7.2
Actual production (Y _A)	kg DM ha ⁻¹ year ⁻¹	4.8	3.2-5.7	-	10.0-10.5	5.0-5.6
Relative yield gap, (Y _P – Y _A) / Y _P		67%	66-81%	-	58-60%	33-40%
Relative yield gap, $(Y_L - Y_A) / Y_L$		33%	24-57%	-	46-49%	23-32%

Grazing (average farm types)

Results and discussion

Results and discussion

Results & discussion

Explanations for yield gaps

■ Socio-economic and environmental constraints → exploitable yield gaps

Exploitable yield gap under resource-limited production:

47% - 36% = 11% of the resource-limited production

Results & discussion

Explanations for yield gaps

- Socio-economic and environmental constraints → exploitable yield gaps
- Farmers are eligible for grassland premiums if:
 - stocking densities < 1.4 livestock units per ha
 - more than 75% of the farmland is grassland
 - low N fertilization rates (max. 125 kg N ha⁻¹)
- Cattle premiums are paid per cow
- Prices of farmland are € 2,800-4,000 per ha

Results and discussion

Yield gap mitigation → not attractive from an economic perspective

- Revenue beef cattle
- △ Operational profit + Bovine premiums + PHAE
- Operational profit

Relative difference:

Cattle

- Diseases
- Stress
- Mortality
- Prolonged calving intervals

Feed crops

- Nutrient limitations
- Pests, diseases, and weeds

(Resource-limited / manag. – Actual)
Resource-limited / manag.

Results and discussion

How to mitigate yield gaps after the change in common agricultural policy (CAP) of the EU in 2015?

■Water-limitation in feed crops

- Sub-optimal selling/slaughter weights, culling rates, calving date, age at first calving, stocking density
- Calf mortality and calving interval
- Cow mortality, diseases, and stress, and nutrients, pests, diseases, and weeds in crops
- Actual production

Conclusions

A generic framework and modelling method is now available to assess yield gaps in feed-crop livestock systems.

Its application to beef production systems in France shows that:

- Yield gaps were 85% of potential live weight production and 47% of resource-limited live weight production
- The main factors attributing to yield gaps were identified (feed quality and quantity limitations, water-limitation in feed crops, cattle management)
- The approach allows to identify improvement options for yield gap mitigation (grazing management, feeding silage)

Thank you for your attention!

